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Abstract Melting peak for metals is described with

expressions derived from thermophysical consideration of

DSC operation. Three parameters govern the shape of the

peak: thermophysical coefficient derived from the DSC

design, enthalpy of fusion of a sample, and heating rate.

Rigorous evaluation yields rather complex expressions, but

simplified expressions can be used in common practice.

The peak shape is described by two different expressions

for two separate stages in the process of metal melting

(1) the melting itself and (2) heat relaxation after the

melting completion. The validity of the expressions was

demonstrated after the experiments on gallium melting.

The thermophysical coefficient is shown be affected to

small variations by the changes in sample preparation or

experimental conditions (melting Ga, In, Zn).

Keywords DSC � Enthalpy of fusion � Heat conduction �
Heating rate � Melting peak � Temperature relaxation

Introduction

Melting of metals is used widely in DSC calibration. Onset

point is used for the temperature calibration and the area of

the peak for the calibration of a heat sensor. It is surprising

thing that there are no equations describing the shape of the

melting peak so far. When discussing the DSC experiments

on melting, several ways are used.

The simplest way is to draw the peak empirically. Four

variants of the shape are shown in Fig. 1, three were bor-

rowed from the standards on DSC experiments [1–3] and

one from the monograph [4]. The peaks are asymmetric in

Fig. 1a, b. DSC signal increases as a straight line from its

start up to a maximum and then decreases exponentially.

These two shapes differ in the position of the maximum,

close to the start or to the end of the peak. Peaks in Fig. 1c,

d are completely symmetric, with curving sides in Fig. 1c

and straight lines in Fig. 1d. These peaks are used in the

references for the discussion of various topics, but the

shape of the peak itself is not discussed.

Mathematical approach to the description of the shape of

the melting peak is used for the approximation of experi-

mental data. Ref. [5] is the example of such an approach.

Numerical fitting of the signal was carried out «with

tools borrowed from spectroscopy and chromatography».

Two types of functions were used: (1) ‘Spectral’ (symmet-

rical) functions ‘‘Gaussian,’’ ‘‘Lorentzian,’’ and ‘‘Voigt’’;

(2) ‘‘Chromatographic’’ (asymmetrical) functions ‘‘expo-

nentially modified Gaussian,’’ ‘‘Haarhoff–Van der Linde,’’

and ‘‘Pearson IV.’’ Each function has three to five parameters

that allow one to improve the approximation. The parameters

have no physical sense. This is the main disadvantage of this

approach. The parameters of the mathematical function have

no relation with the particular properties both of a sample and

DSC and can be calculated only after the fitting. No pre-

diction on the shape of the DSC peak is possible.

Most popular approach is the electric modeling of DSC

operation. This is a traditional way to analyze thermoana-

lytical measurements for several decades [6]. The modeling

is described in detail in many reports and monographs (see,

for example, most fresh monograph by Höhne et al. [4]).
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According to this approach, DSC cell is substituted with an

electric circuit containing resistances and capacitors, and

the heat flows are substituted with electric currents. DSC

signal is considered to be equivalent to the voltage derived

from the equations describing the electric current in the

analog circuit. The equation itself can be (and usually is)

rather complex to contain many parameters in order to

describe the signal as accurate as possible. For conven-

tional scheme of DSC cell, the mathematical expression is

a differential equation of the second order

UrðtÞ ¼ �
1

R
þ 2

RMM

� �
DT

� C þ CS 1þ RMS

1

R
þ 2

RMM

� �� �� �
dDT

dt

� RMS � C � CS

d2DT

dt2
þ ðCR � CSÞ

dTR

dt

þ CS � CRðRMS � RMRÞ
d2TR

dt2
;

where DT is the signal on the differential thermocouple,

and the rest parameters describe the particular elements of

the electric circuit (see [4]). Calculated peaks of the

melting look very similar to those measured in the exper-

iments. The calculations confirm that the peaks depend on

heating rate, heat of fusion, and thermal conductance of the

sample. The quantitative relationship among these param-

eters remains unknown.

Much more rare (and recent) is the thermophysical

approach, when the DSC operation is considered directly

through the heat flow, enthalpy of fusion, heating rate, etc.,

without analogy with electric circuits. Equations enabling us

to calculate the peak height and width after heating rate,

sample mass, enthalpy of fusion, and heat conductivity of the

sample holder were published for the first time in Russian

textbook [7] (can be downloaded from http://htt.nsu.ru/files/

Thermal%20analysis.pdf) and 3 years after in the user

magazine in English [8] (can be downloaded from www.

mt.com/ta-usercoms). The equations in [7] and [8] are

approximate because they were derived after simplified

considerations.

The subject of this study is to derive the explicit for-

mulae that will allow us to describe the shape of the

melting peak as measured with a DSC. The equations will

be derived in the same way as it was performed recently for

the calibration coefficient of DSC as a function of tem-

perature [9]. The latter did allow us do develop optimal

calibration procedure [10] that is used in practice today

[11–14].

Theory

Melting

Figure 2 shows DSC cell with two crucibles at their posi-

tions, empty (reference, R) and with a sample (S). A heat

portion of

dQR ¼ cCmCdT ; ð1Þ

is necessary to increase the temperature of crucible R by

dT, where cC is the specific heat of the material that the

crucible is made of, and mC is its mass. Crucible S is
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Fig. 1 Empirical shape of the

melting peak as detected by

DSC from different references:

a [1], b [2], c [3], d [4]
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identical to R in ideal differential scheme of DSC. The heat

necessary to increase its temperature by dT is

dQS ¼ ðcCmC þ cSmSÞdT; ð2Þ

where cS mS is the heat capacity of the sample. If heating

DSC cell with a constant heating rate b = dT/dt, heat flows

(W = dQ/dt) to crucibles R and S differ from one another:

WR ¼ cCmCb; ð3Þ
WS ¼ ðcCmC þ cSmSÞb; ð4Þ
WS �WR ¼ cSmSb ¼ W0: ð5Þ

W0 is known as a baseline. The difference in the heat fluxes

between crucibles R and S is due to the difference in their

temperatures

DW ¼ � S1k
l
þ 4S2erT3

� �
ðTS � TRÞ; ð6Þ

where S1 is the area of a contact between crucible and

sensor, k is the coefficient of heat conductivity, l is the

distance between a heat source and a sample holder, S2 is

the area of a crucible exposed to the radiation, e is the

emissivity of the substance which the crucible is made of,

and r is the Stefan’s constant [9]. The first term in the

brackets is for the heat conduction and the second one is for

the radiation. In combining Eqs. 5 and 6, we receive

cSmSb ¼ �
S1k

l
þ 4S2erT3

� �
ðTS � TRÞ: ð7Þ

This is the key formula for the DSC calibration coeffi-

cient as a function of temperature [9]. The function can be

derived after consideration of differential thermocouple

and the Seebeck coefficient. Here, we will use it to analyze

thermal flows and processes during the metal melting. We

emphasize the case of a metal because will not discuss the

temperature gradient, considering the same temperature

throughout the crucible. The duration of the melting is also

considered too short to simplify Eq. 7 with

K ¼ S1k
l
þ 4S2erT3

� �
� const: ð8Þ

Temperature of crucibles R and S during the experiment

on metal melting is shown in Fig. 3. The difference in

temperature is

TS ¼ TR �
cSmSb

K
¼ TR � DT : ð9Þ

Thermophysical analysis of DSC operation with Eqs. 1–9

is described in many reports and monographs, including

those with electric circuit analogy. The only difference

between previous works and current one is in the coefficient

K. It was considered a function of thermal conductivity (S1, k,

l) elsewhere, but we add the heat radiation. This point was the

last in thermophysical consideration. After Eq. 9, only

electric analogy was considered. Here, we will continue

analysis of thermal processes.

Sample starts to melt at time t0 and its temperature

remains constant up to the complete melting at tmax. During

this period, the difference in temperature between the

crucibles increases linearly DT ? b(t - t0) and the heat

flow is spent on the melting

W ¼ KðDT þ bðt � t0ÞÞ: ð10Þ

Let’s substitute variables

s ¼ t � t0; smax ¼ tmax � t0: ð11Þ

The total heat spent on the melting is calculated

according to

Zsmax

0

Wds ¼ K

Zsmax

0

ðDT þ bsÞds: ð12Þ

On the left-hand side, the integration yields the total

enthalpy of fusion:

R

ΔU

S

Fig. 2 DSC cell with empty reference (R) crucible and that filled

with a sample (S)
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Fig. 3 Temperature against time for reference and sample crucibles

during the experiment on metal melting. Melting point is reached at

t0. The whole sample becomes liquid at tmax. See explanations for

areas A1 and A2 in the text
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Zsmax

0

Wds ¼ qmS; ð13Þ

where q is the specific enthalpy of fusion. On the right-

hand side, we have two contributions

K

Zsmax

0

ðDT þ bsÞds ¼ KDTsmax þ
Kb
2

s2
max: ð14Þ

In using Eq. 9, we have

KDTsmax ¼ cSmSbsmax: ð15Þ

Thus, after the integration, Eq. 12 transforms into

Kb
2

s2
max þ cSmSbsmax � qmS ¼ 0; ð16Þ

which allows us to calculate the duration of the melting

smax:

smax ¼
�cSmSbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

Sm2
Sb

2 þ 2KbqmS

q
Kb

¼ � cSmS

K
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cSmS

K

� �2

þ 2qmS

Kb

s ð17Þ

Equation 17 contains only two different terms, but it is

not quite easy to analyze it. We can simplify it if one of

two terms is much greater than the other. The two terms in

Eq. 17 are there because the total heat spent on the melting

is a sum of two contributions (see Eq. 14). Each

contribution is shown in Fig. 3 as the crosshatched area,

A1 proportional to time and A2 proportional to the square of

time. Usually

A1

A1 þ A2

� 1 ð18Þ

Omitting term A1, we receive simplified expression from

(17):

smax ¼
ffiffiffiffiffiffiffiffiffiffiffi
2qmS

Kb

s
: ð19Þ

According to Eq. 10, DSC signal increases during the

melting from baseline W0 up to the maximum Wmax and the

increase is

Wmax �W0 ¼ Kbsmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KqmSb

p
: ð20Þ

The greatest difference in temperature (peak hight) is

Tmax � Tonset ¼ bsmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2qmSb

K

r
: ð21Þ

Equations 19–21 were derived in [7] and [8] after

simplified considerations and here these are the simplified

expression after rigorous considerations. The parameters of

the melting peak are shown in Fig. 4 for temperature

difference between crucibles R and S against time.

Temperature relaxation

After completion of the melting, crucible S contains the

melt at the melting point Tonset but the temperature of

crucible R is Tonset ? bsmax (the increase in temperature

for the time of melting) ? cSmSb/K (=DT, see Eq. 9, the

difference at the start of the melting). For the sake of

simplicity, let the heat capacity of solid sample be equal to

that of liquid sample. Now we will consider the relaxation

of temperature difference between the cold melt and hot

surroundings. The moment of melting completion is the

new starting point for the relaxation. Difference in tem-

perature between the crucibles will change in time. Excess

heat flow to crucible S is

WðtÞ ¼ KðTRðtÞ � TSðtÞÞ ð22Þ

or

dQ ¼ KðTRðtÞ � TSðtÞÞdt: ð23Þ

The increment in temperature is

d(TRðtÞ � TSðtÞÞ ¼ dTRðtÞ � dTSðtÞÞ ð24Þ
dTRðtÞ ¼ bdt ð25Þ

dTSðtÞ ¼
dQ

cCmC þ cSmS

: ð26Þ

TR increases according to Eq. 25 because DSC cell is

heated with constant heating rate b. TS increases according

to Eq. 26 because of heat flow (23). Substituting Eqs. 23,

25, and 26 for right-hand side of Eq. 24, we have

Time

K
2qmsβT

R
 –

 T
S

tmaxtonset

maxτ

Fig. 4 Temperature difference TR - TS measured with differential

thermocouple as presenting the results of the experiment on metal

melting. The melting peak parameters are shown
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d(TR � TSÞ ¼ ðcSmSb� KðTR � TSÞÞ
dt

cCmC þ cSmS

;

ð27Þ

dðTR � TSÞ ¼ � ðTR � TSÞ �
cSmSb

K

� �
Kdt

cCmC þ cSmS

;

ð28Þ

dln TR � TS �
cSmSb

K

� �
¼ � Kdt

cCmC þ cSmS

: ð29Þ

The solution for this differential equation is

TR � TS ¼
cSmSb

K
þ A exp � Kt

cCmC þ cSmS

� �
: ð30Þ

Constant A is calculated after the limits of integration

and finally we have

W ¼ KðTR � TSÞ

¼ cSmSbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KqmSb

p
exp � Kt

cCmC þ cSmS

� �

¼ W0 þWrel: ð31Þ

Figure 5 shows DSC signal consisting of two contributions,

constant W0 (baseline) and variable Wrel (decreasing with

time). It is the latter that describes the temperature relax-

ation after the melting.

Testing the equations

Testing the validity of the derived equations

Equations 19–21 are related with simple transformations. To

demonstrate the validity of all these equations, it is enough to

test the linear relationship between the peak height (in tem-

perature or in watts) and square root of the product of sample

mass by heating rate. Such a test was performed for the first

time in [15]. Four samples of different mass (0.053, 0.846,

3.425, and 6.301 mg) were measured at heating rates

between 1 and 20 K min-1. Unfortunately, the detailed

information about the experiments was not reported, only the

figure. Experimental points were found to fit very well to a

straight line. Surprisingly, the range of experimental valuesffiffiffiffiffiffiffi
mb
p

plotted turned out to be very small, less than 1.5

(mg K s-1)1/2. It seems very strange because even the

sample of 0.846 mg (second to the smallest sample) at the

heating rate of 20 K min-1 yields 4.1 (mg K s-1)1/2. It looks

like the test was especially limited in the product of mass by

heating rate in order not to show the high values.

Here, we will test the equations for high values.

Experimental testing of Eqs. 19–21 was performed with

DSC-204 Netzsch in standard Al crucibles. Experimental

data on the gallium melting for the test are listed in

Table 1. The variables are range in wide limits, more than

ten times each: b from 1 to 15 K min-1 and m from 3 to

35 mg. The square root ranges also more than ten times,

from 1.74 to 23.05. The test itself is in Fig. 6,
ffiffiffiffiffiffiffi
mb
p

versus

bsmax. Experimental points fall on the straight line, sup-

porting the validity of the equations derived.

The best linear behavior is for small values, with the

deflection downwards for high values. Let us remember

that Eqs. 19–21 were derived on the assumption that the

Time

BaselineBaseline

D
S

C
 s

ig
na

l

t0

Wrel

W0

Fig. 5 Relaxation of temperature difference between the melt and

surroundings in DSC cell. W0 is the baseline and Wrel is the excess

heat spent for the relaxation

Table 1 Experimental conditions (sample mass and heating rate) and

the results (melting duration) of Ga melting

Run m/mg b/K min-1 ffiffiffiffiffiffiffi
mb
p

bsmax/K

1 3.04 1 1.74 0.91

2 15.00 1 3.87 2.11

3 15.00 3 6.71 3.53

4 15.00 6 9.49 4.89

5 15.00 15 15.00 7.21

6 35.41 15 23.05 10.77

12

10

8

6

4

2

0
0 5 10 15 20 25mβ

m
ax

/K
βτ

Fig. 6 Experimental values bsmax against calculated
ffiffiffiffiffiffiffi
mb
p

(filled
circles). Ideal agreement between simplified equations and experi-

ment is to be a straight line. The deflection downwards of the points

with high values proves the validity of the model and simplification of

Eq. 17
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enthalpy of fusion is much greater than the product of heat

capacity by heating rate, bsmax (Eq. 18). The longer is the

melting (smax), the greater is the heat capacity contribution.

This contribution decreases experimental value bsmax as

compared with simplified formula
ffiffiffiffiffiffiffi
mb
p

. Thus, the deflec-

tion downwards of experimental points in Fig. 6 for high

values of
ffiffiffiffiffiffiffi
mb
p

does support our thermophysical model.

We may suppose that the deflection downwards is the

reason why Schawe [15] has limited the greatest value of

his experimental points with 1.5 (mg K s-1)1/2. The

experimental points with larger values do not support

simplified considerations yielding Eqs. 19–21 [7, 8].

Melting point of gallium (atomic weight 69.723) is

302.9146 K (29.7646 �C) [16] and its enthalpy of fusion is

80.097 ± 0.032 J g-1 [17]. Heat capacity of Ga near the

melting point is about 26 J mol-1 K-1 or 0.37 J g-1 K-1,

nearly the same in crystal and liquid states [18]. The last

point makes Ga very suitable for our purpose, because the

heat capacity is the same for crystalline and liquid metal in

our model (see the first paragraph in ‘‘Temperature relax-

ation’’ section).

For the experimental point with the longest melting

(35.41 mg and 15 K min-1) the enthalpy increment due to

the baseline is about 5% (0.37•10.77 & 4 J g-1) of the

enthalpy of fusion. Thus, the last experimental points in

Fig. 6 deflect downwards because the large enthalpy

increment due to the heat capacity makes the simplification

of Eq. 17 into 19 incorrect.

Thermophysical coefficient K

User cannot change technical features of a DSC, but it

would be useful for him to know the value of thermo-

physical coefficient K affecting the melting peak. The

value can be derived from the same experimental data

listed in Table 1. We can derive from Eq. 21

K ¼ 2qmSb

bsmaxð Þ2
: ð32Þ

All the values in the equations except q are listed in

Table 1. For example, for the sample of 15 9 10-3 g at the

heating rate of 0.1 K s-1 the value of bsmax is 4.89 K. The

thermophysical coefficient

K ¼ 2 � 80:097 � 0:015 � 0:1
ð4:89Þ2

¼ 0:01005 W K�1

¼ 10 mW K�1: ð33Þ

This value is valid only for 300 K because

thermophysical properties of materials, which DSC made

of, depend on temperature (thermal conductivity, heat

capacity, etc.). As the K also depends on the heat radiation,

its value increases with temperature (see Eq. 7).

Coefficient K governs the calibration coefficient of DSC

k(T). The latter is

kðTÞ ¼ eðTÞ
S1k=lþ 4S2erT3

; ð34Þ

where e(T) is the Seebeck coefficient of the thermocouple

used as the heat flow sensor [9]. In comparing (34) with

(8), we see that

K k Tð Þ ¼ e Tð Þ: ð35Þ

Thermophysical coefficient K cannot be changed in

experiments at will like the sample mass or heating rate.

But, significant variations in the value of coefficient K can

be observed sometimes. First case is shown in Fig. 7. Five

of six runs (1–5) on Ga melting have nearly the same line

of increasing signal from the onset point to the maximum

of the melting peak. The last run differs significantly. The

line increases surely steeper than the rest ones. The reason

is in the sample preparation. For runs 1–5, solid metal

sample was put onto the bottom of cold crucible (room

temperature), then cooled and heated to the melting. In the

last run, solid metal sample was put into the hot crucible

(40–50 �C) and pressed to the bottom in order to melt it

before cooling. Then the crucible with liquid Ga was

cooled down to the sample freezing, and then the run was

performed like the others. The manipulations with the

sample in the sixth run allowed the sample to contact better

with the crucible, increasing the heat conduction between

the sample and crucible. This makes a variation in the

K value, increasing heat flow and DSC signal, but

decreasing the duration of melting smax.

Another example of the variations in thermophysical

coefficient K can be seen in Fig. 8. This is the melting of

zinc. All the runs are with the same sample. Crucible was

placed inside DSC cell and measured 21 times according to

the same temperature program, one by one. It is evident

400

300

200

100

0
20 30 40 50

6

Temperature/°C

DSC/μV
Exo

5

4
3

2
1

Fig. 7 Uniform shape of melting peak for runs 1–5 is violated for run

6. Slight variation in thermophysical coefficient K is due to the

variation in sample preparation (see text)
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from the figure that the slope of the straight line of the

melting peak decreases with time (with the number of a

run). The reason is in the oxidation of the sample. After the

completion of the experiments, the sample was found to

change its color from metal luster to iridescent play of

black colors. Zinc oxide on the surface of a sample is a bad

heat conductor, decreasing heat exchange and DSC signal,

but increasing the duration of melting smax. In contrast,

indium is not oxidized during the melting–freezing runs

and similar experiments with indium do not reveal the

changes in the slope of the melting peak (Fig. 9). Ther-

mophysical coefficient K remains constant in experiments

with indium.

Logarithmic heating of cold liquid after melting

In contrast to the melting of metal described with Eqs. 19–21,

the logarithmic relaxation of the peak was known for a long

time. Electric analog models have yielded similar function of

time:

DT ¼ k1 exp
�t

s

� �
þ k2; ð36Þ

with s = CS�R, where CS is the heat capacity of the sample

and R is the thermal resistance, which ‘‘must be determined

by calibration’’ [4]. Our Eq. 31 is very similar, but with

explicit expressions for coefficients k1, k2, and s:

W ¼ cSmSbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KqmSb

p
exp � Kt

cCmC þ cSmS

� �

¼ W0 þWrel:

So, it is not necessary to test the validity of the

temperature function, but rather the values of the

coefficients as predicted by theory. To test the equations

against the experimental data, we have to transform a DSC

signal

ln(W �W0Þ ¼ a� bt; ð37Þ

where

a ¼ 1

2
lnð2KqmSbÞ and b ¼ K

cCmC þ cSmS

ð38Þ

and then to calculate the coefficients a and b by the least

squares. The results of these calculations for runs 1, 2, and

4 are shown in Fig. 10. Very straight lines prove the

validity of logarithmic function once again. The coeffi-

cients (with excess digits) are shown in Table 2. For every

run, the calculations were carried out for 25 points from

t = 6 s to t = 30 s with the step of 1 s. The starting point

(t = 0) is assigned to the first value decreasing after the

DSC/μV
Exo

419

20

40

60

80
First

Last

420 421 422 423 424 425
Temperature/°C

Fig. 8 Melting of the same sample of Zn (21 runs). Slope of the peak

decreases with time due to the change in thermophysical coefficient

K (oxidation of sample surface)

DSC/μV
Exo

60

40

20

Run 1

157 158 159
Temperature/°C

Fig. 9 Melting of the same sample of In (13 runs). Slope of the peak

remains unchanged. Only the first run differs from the rest

0
–4

–2

0

2

4

10 20 30
Time/s

In
(W

(t
))

 –
 W

0)

Run 4

Run 2

Run 1

Fig. 10 Kinetics of temperature relaxation after Ga melting comple-

tion for runs 1 (filled circles), 2 (empty squares), and 4 (filled squares)

Table 2 Coefficients a and b for thermal relaxation after the melting

peak as calculated according to Eq. 37 with least squares

Run (i) ai bi

1 3.4382 0.2186

2 4.3083 0.1669

4 4.9446 0.1686
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maximum. Accuracy of the starting point identification (dt)

is about 1 s, and, hence, the error in the evaluation of the

signal amplitude is bidt. Let’s start the test from the ai

coefficients:

Run 1: a1 = 3.44 ± 0.22.

Run 2: a2 = 4.31 ± 0.17.

Run 4: a4 = 4.94 ± 0.17.

Runs 1 and 2 are with the same heating rate but with the

sample mass of 3.04 and 15 mg, respectively. The differ-

ence between them is to be

a2 � a1 ¼
1

2
ln

15

3:04

� �
¼ 0:80;

which is close to the calculated value

a2 � a1 ¼ 0:87� 0:39:

Runs 2 and 4 are with the same sample mass but with

the heating rates of 1 and 6 K min-1, respectively. The

difference between them is to be

a4 � a2 ¼
1

2
ln 6 ¼ 0:90;

which agrees with the calculated value within the limits of

error

a4 � a2 ¼ 0:63� 0:34:

Now let us test the bi coefficients. They do not depend

on the starting point of the set, and the coefficients b2 and

b4 must be equal to each other because the sample is the

same in both runs. This is true: values 0.1669 and 0.1686

derived from the experiment differ by less than 1%. It is

very good agreement. According to Eq. 38, coefficients b1

and b2 must differ from one another because runs 1 and 2

differ in sample mass mS:

b1

b2

¼ cCmC þ cSmS2

cCmC þ cSmS1

: ð39Þ

Crucible mass is 38 mg, heat capacity of aluminum is

24.35 J mol-1 K-1 or 0.90 J g-1 K-1 [18]. Heat capacity

of gallium is 0.37 J g-1 K-1 (see above). Thus, we have

measured

b1

b2

¼ 0:2186

0:1669
� 1:31

and calculated after theory

cCmC þ cSmS2

cCmC þ cSmS1

¼ 0:90 � 0:038þ 0:37 � 0:015

0:90 � 0:038þ 0:37 � 0:00304
� 1:13:

The difference between measured and calculated values

is large enough, about 15%. Let us compare our

‘‘thermophysical’’ Eq. 31 with ‘‘electrical’’ Eq. 36. The

latter predicts that the coefficient bi depends only on the

heat capacity of the sample (on the sample mass in our runs

1 and 2):

b1

b2

¼ cSmS2

cSmS1

¼ 15

3:04
� 4:93: ð40Þ

This calculated result differs much greater from the

experiment than that after Eq. 39.

Conclusions

DSC peak of metal melting consists of two parts, isother-

mal heat consumption during the melting and heat relax-

ation of cold melt. Thermophysical consideration of the

heat flows inside a DSC cell has allowed us to derive the

Equations describing the shape of the peak. Three param-

eters govern mainly the melting: sample mass m, heating

rate b, and thermophysical coefficient K. The two first

parameters can be changed in the experiment at will, but

not the last one.

Experimental testing of the derived equations did

approve their validity. DSC peaks of Ga melting with

different sample mass and different heating rates obey the

relationships predicted by the theory, including the down-

ward deflection from a straight line derived recently from

the simplified consideration [7, 8]. The greatest discrep-

ancy between thermophysical theory and experiment were

found in the relaxation part of the peak, of about 15%.

Nevertheless, this discrepancy is much less as compared

with the predictions of electric modeling of DSC.

The results of this work can be useful for the planning of

DSC experiments. Thermophysical approach is simpler

than the electric analogy because the steps of constructing

electric circuit and interpreting relations between thermal

and electric values are omitted. Students readily realize it

when studying thermal analysis and calorimetry at the

Novosibirsk State University.
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